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Abstract Detailed neutron powder diffracdon data are presented which show that the phase 
transition (F'$/mmc-CZ/m) at 754 Kin sodium cahonate, NaZC03, is a second-order proper 
femlastic m = 2 transition. The order parameter is characterized by the shear suain 65, with 
a coupled rotation of the carbonate groups. The diffraction peaks show clear evidence for the 
divergence of the temperamre factors at the transition temperahue due to the soflening of the 
acoustic modes at small wave vectors. This results in the appearance of broad diffuse scattering 
at B r a g  positions at the expense of the intensities of the Bragg peaks. We call this process 
'lattice melting'. 

1. Introduction 

Sodium carbonate, Na~C03, has been studied in some detail recently because of the 
important incommensurate phase transition at 633 K 11, 21. Less attention has been paid 
to the hexagonal-monoclinic phase transition at -760 K. The symmetry change from 
P&/mmc to C2/m, with no change in the size of the primitive cell, suggests that the 
phase transition is a proper ferroelastic transition with a two-dimensional order parameter 
[3, 41. The dimension of the order parameter is important, since it defines a distinct class 
of ferroelastic materials. A Guinier-Lennd x-ray powder diffraction photograph shown by 
De Wolf€ and Tuinstra [l] suggests that the transition in NaZC03 might be second order. 
There are only a few well characterized examples of this class of ferroelastic material, such 
as KCN and KCN:KBr mixtures, and KAIF,, and there are apparently no other known 
examples of pure systems where this type of phase transition is second order. In the light 
of recent theoretical work on second-order phase transitions of this type [5], it is clear that 
detailed crystallographic studies of a number of such systems are needed. Thus we report 
here a study of the hexagonal-monoclinic phase transition in sodium carbonate using high- 
resolution neutron powder diffraction, and address two issues. Firstly, we are interested 
in the characterization of the transition-for example, what is the primary instability, and 
is the transition really second order? Secondly, we are interested in the effects of the 
phase transition on the shapes of the Bragg peaks and crystallographic temperature factors, 
following the recent theoretical analysis of Mayer and Cowley [SI appropriate for this type 
of material. In this latter regard, we believe that the results we will present below are among 
the most shiking phenomena found in any ferroelastic material. 

11 Present address: lSlS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX, UK. 
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Table 1. Representations of the atomic cwrdinates in the 8- and ar-phases of sodium carbonate. 
The coordinates ComsDond to the usual settings of the two s p a  groups. 

The crystal structure of the high-temperature hexagonal or-phase of sodium carbonate 
is represented in figure 1. One of the sodium atoms, Na(I), is octahedrally coordinated 
to the oxygen atoms, and the Na06 octahedra form face sharing columns along [OOI]. 
The columns are interconnected by the oxygen atoms which are shared with the carbonate 
groups. The second sodium atom, Na(II), is located in a larger site above the carbon atoms. 
The crystal structure of the low-temperature monoclinic p-phase is shown in figure l(d). 
The individual columns of Na06 octahedra do not distort significantly as a result of the a-p 
phase transition, but neighbouring columns move along [OOl] with respect to each other on 
cooling through the transition, hinged by the carbonate groups which rotate in phase with 
the shear strain. The sodium atoms Na(1) and Na(2), which are symmetrically distinct in 
the monoclinic structure, are related to Na(1) in the hexagonal phase, and Na(3) is related 
to Na(II). The two oxygen atoms O(1) and O(2) are equivalent in the hexagonal phase. The 
relationship between the atomic coordinates of both phases is summarized in table 1. The 
structure of the p-phase has previously been measured at only three temperatures, but our 
new measurements indicate that there are no other significant changes that occur through 
the phase transition. 

The active representation for the change of symmetry in the hexagonal-monoclinic phase 
transition is the two-dimensional representation El,. One of the two components of this 
generates the C 2 / m  monoclinic structure found in sodium carbonate, this operation being 
characterized by the shear strain €5. whereas the other generates a different monoclinic 
structure of space group C2/c, as found in potassium carbonate, KzCO~ [I]. The symmetry 
allows for a second-order phase transition in the sense of Landau theory [4]. The results 
presented below show that there is no measureable first-order discontinuity in NazC03, and 
that the phase transition can be described by a Landau free energy. The transition can 
be generated by softening of the C ,  elastic constant, which leads to the softening of all 
the transverse acoustic modes that have wave vectors in the a'-b' plane and eigenvectors 
polarized along [OOl]. This softeningof the acoustic modes over a two-dimensional sector of 
reciprocal space defines a distinct class of ferroelastic phase transitions, denoted as m = 2 
by Folk et ai [6, 71, which is different from the more common case where the acoustic 
modes only soften along certain directions in reciprocal space (m = 1). 

The results we present in this paper show that sodium carbonate is a particularly good 
example for the study of phenomena associated with second-order m = 2 ferroelastic phase 
transitions. In particular we are interested in the prediction of logarithmic divergence of 
the temperature factors (equivalent to the mean squared atomic displacements) that arises 
from the softening of the acoustic modes for wave vectors in a plane in reciprocal space 
[5, 6, 71. This causes a complete loss of long-range order at the transition temperature, 
and a subsequent vanishing of the intensities of the Bragg peaks. Since the divergence of 
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Figure 1. (a) Plan of the smcture of the hexagonal a-phase of sodium carbonate viewed down 
[OOI], showing the Na(l)Oa octahedra and the carbonate groups (triangles). The position of 
the Na(ll) atom is directly above the &n atom. and is indicated by the shaded sphere. [b) 
Perspective view of the SINCIUE of the hexagonal a-phase of sodium carbonate, showing the 
carbonate groups (triangles) acting as hinges wnnecting the columns of face sharing Na(l)Os 
octahedra. (c) Plan of the strtlcture of the hexagonal u-phase of sodium carbonate viewed dawn 
[OlOl, for comparison with (a. The thick lines indicate the planes of the carbonate groups. (4 
Plan of the SlNCIUre of the monoclinic @-phase of sodium carbonate viewed down [OlOI. In this 
projection the shear strain and the coupled hinged rotations of the carbonate groups are clear, 
pmicularly when compared with the view of the hexagonal phase from the same direction, (c). 

the temperature factors is due to the acoustic modes, which cause neighbouring atoms to 
be displaced in phase by the same distance, some degree of short-range order is preserved. 
The loss of long-range order at the transition temperature has some similarities to melting 
[ 5 ] ,  but unlike real melting long-range order is recovered both by heating above and by 
cooling below the transition temperature. Moreover, there is no large change in the local 
order nor is there significant atomic diffusion. In effect, the melting is associated with the 
lattice rather than with the atomic order, and therefore we have called this effect ‘lattice 
melting’ [SI. Mayer and Cowley [5] have shown that at the transition temperature the 
Bragg peaks are replaced by broad peaks of diffuse scattering, and they have derived an 
expression for the shape of these peaks at the transition temperature. On approaching the 
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transition temperature the Bragg peaks will decrease in intensity and the peaks of diffuse 
scattering will increase. Something like lattice melting has been observed in the mixed 
system KCNKBr [9], but in this case the random defects prevent the complete loss of the 
Bragg peak intensities [lo]. Preliminary neutron powder diffraction measurements of the 
corresponding m = 2 transition in KzCOs have been made recently at Chalk River and 
indicate that lattice melting occurs in this material as well. As far as we are aware all other 
known examples of m = 2 ferroelastic phase transitions are first order, and in these cases 
the effects of lattice melting are unlikely to be observed. Thus Na2C03 is an ideal system 
for the study of lattice melting. 

The rest of the paper takes the following form. In section 2 we outline some theoretical 
points concerning the scattering in the presence of lattice melting. In section 3 we describe 
OUI experimental work. In sections 4 and 5 we describe and discuss the crystallographic 
aspects of the phase transition. Finally in section 6 we consider in some detail the 
phenomenon of lattice melting by analysing the temperature dependence of the profiles 
of the diffraction peaks. 

I P Swainson et a1 

2. Some comments on the neutron scattering law and lattice melting 

The lattice melting phenomenon outlined above involves the divergence of the temperature 
factor due to the softening of an acoustic mode over a plane of wave vectors. This leads 
to a loss of the intensity of the Bragg peak, which is replaced by a broad peak of diffuse 
scattering. Denoting the intensities of the Bragg and diffuse scattering peaks by and 
IOime respectively, we can write the total scattering as a sum of these two terms: 

h t d  = I B m g  + IDbTusz. (1) 

In a diffraction experiment the measured quantity,  IT^,, is the total scattering integrated 
over all energies, whereas the Bragg component is a delta function at zero energy. Both 
terms are written as 

where ri is the position of the j th  atom (assumed to vary with time), bj is the corresponding 
neutron scattering length, and Q is the scattering vector. We have neglected factors that 
depend on geometry and scale factors. We can write the instantaneous position of an atom 
as 

(4) 

where R is the average position, uo is the displacement due to all the phonons except the 
soft acoustic modes, and uA is the displacement due to the soft acoustic modes. Thus we 
can rewrite the expression for the total intensity as 

r = R +  uo + uA 

,I 12, 

I )  I T ~ D ~  = ( I T b j  exp (iQ . [Rj + up +U;"]) (5) 
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that is 

Ip,d = ( x b i b j  exp (iQ [Ri - Rj]) exp (iQ . [ay - $1) exp (iQ . [U: - U,”]) (6) 

which approximates to 

I~~~oral N c b i b j  exp (iQ. [Ri - Rj]) (exp (iQ [uy - U?])) (exp (iQ . [U: - U,”])) (7) 

where we assume a decoupling of the effects of the soft acoustic modes (the critical modes) 
and the effects of all other phonons (the non-critical modes). We note that within the 
harmonic approximation we can now separate out the non-critical terms: 

h J  i 
i.j 

= x b i b j  exp (iQ . [Ri - Rj]) exp (- [WP(Q) + Wp(Q)]) (exp (iQ. [U: - $1)) 
i . j  

(8) 
where we have defined the non-critical contribution to the temperature factor 

In deriving the above expression we have also assumed that the inelastic scattering from the 
displacements uo does not contribute significantly to the total scattering. This assumption 
is not valid for the critical displacements uA. 

We proceed with a plausibility argument. The Bragg term is given as 

lerqps = / ~ b j e x p ( ’ 4 . R j ) e x p ( - W p ( Q ) ) e x p ( - W : ( Q ) )  (10) 

As we have noted above, on approaching Tc the displacements U* diverge, so that the factor 
exp(- W,”(Q)) and hence rewps fall to zero. Since uA is determined by the long-wavelength 
acoustic modes, Wp(Q) will be the same for each atom in the unit cell. Moreover, we 
expect that the quantity U? -U: will be close to zero for atoms separated over quite large 
distances. Therefore we expect that < exp(iQ [ut - $1) >N 1 for all pairs of atoms, so 
that the total scattering intensity can be approximated as 

(12) 

Implicit in the argument is the integration over all values of Q in the vicinity of each Bragg 
peak, which is justified if, as in the present case, the width of the scattering is small in 
comparison with the size of the reciprocal lattice parameters. From our argument we expect 
that although the Bragg intensity falls to zero as the critical displacements diverge, the total 
intensity is unaffected-the intensity of the diffuse scattering term increases to compensate 
for the loss of Bragg scattering. This tentative conclusion is supported by the data we present 
below, although we recognise that our arguments do not constitute a proof of this point. 
(Mikeska and Schmidt [ll] claim that this result is exact, by deriving an expression for 
the scattering intensity Z(Q) of a two-dimensional crystal and inviting the reader to verify 
that the total intensity is constant by integration of Z(Q) over the region around Q.) The 
difference between the total scattering and the Bragg scattering is that the total scattering 

I~atal bibj exp (iQ. [Ri - Rj]) exp (- [W?(Q) t Wj”(Q)]). 
i.1 
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takes account of the correlation between the critical displacements, whereas the Bragg term 
assumes no correlation. These arguments suggest that there is complementay shmtural 
information in the total and Bragg intensities. If the total scattering were analysed as if 
it were Bragg scattering, it would yield the same information about the atomic positions 
as would be obtained from the analysis of the Bragg intensities, expect that the refined 
temperature factors would be those associated with the non-critical atomic displacements, 
U,". rather than the total displacements, U," -+ U;. This is the approach we have taken in 
our Rietveld analysis below. The critical displacements can then be extracted simply as 

I P Swainson et a1 

3. Experimental details 

3.1. Neutron powder diflaction expeninenis 

Our neutron powder diffraction measurements were obtained using the HRPD diffractometer 
at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK) and the 
C2 DUALSPEC diffmtometer at the NRU reactor at Chalk River Laboratories (AECL 
Research, Canada). 

Data were 
collected for fliaht times between 35 and 120 ms, corresponding to d spacings between 
-0.7 and 2.4 1. The sample was held in a vanadium can of diameter 10 mm. The 
furnace used for these measurements had a cylindrical vanadium heater that surrounded the 
sample. Temperatures were measured using a Chromel-A thermocouple. Measurements 
were obtained over the temperature range 5 to 1000 K, but in this paper we are only 
concerned with the measurements above 600 K. Partly because of problems with the 
temperature calibration on the furnace on HRPD, we did not obtain a complete set of 
data around the a-,9 phase transition temperature, which is why we then obtained a new 
set of data on the C2 diffractometer. 

The C2 diffractometer is a high-resolution constant-wavelength powder diffractometer 
with an 800-wire curved detector covering an angular range of 80" [13]. For these 
experiments a wavelength of 1.50553 8, was selected using an Si(53 1) monochromator, 
and its value was determined using a standard powder sample of silicon. For the majority of 
runs we collected data for scattering angles between 30 and 110" with two positions of the 
detector separated by 0.05". For some runs however we collected data for scattering angles 
between 5 and 120" with points separated by 0.05" by using four positions of the detector. 
The sample was held in a vanadium can of diameter 8 mm. The furnace used for these 
measurements had a cylindrical graphite heater that surrounded the sample in the scattering 
plane. A diffraction peak from the furnace at -25" was observed in the diffraction patterns 
and excluded from the profile refinements. Temperature was measured using a Chromel-A 
themocouple. Measurements were obtained over the temperature range 605 to 970 K. 

The width of a Bragg peak in the absence of any anomalous broadening is due to two 
factors: instrumental resolution, and sample properties such as particle size and internal 
strains-these define an effective resolution function for the measurements. Analysis of the 
(202) peak at high temperatures showed that the effective resolution function for this peak 
has a width of A d j d  of 0.003 for HRPD and 0.007 for C2. 

We used the same source material for the samples for the work on both diffractometers 
(99.995% purity, obtained from Aldrich Chemicals, UK). We used a fresh batch of material 
for each experiment, and the samples were dried thoroughly immediately before use. 

HRPD is a high-resolution time of flight powder diffractometer [12]. 
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3.2. Temperature control 

Due to the large scale of the sample environment equipment in a neutron diffraction 
experiment, accurate measurements of the temperature are difficult, so a note on this detail 
is of some value. We used two thermocouples in the C2 furnace. The thermocouple used 
for temperature control was located close to the sample but not in contact with the sample or 
sample mount. A second thermocouple was used to read the temperature, and was attached 
to the sample at the position at which it was mounted onto the furnace. Typically we found 
that the temperature on this second thermocouple gave measurements that were 15-20 K 
lower than those given by the control thermocouple, and may be slightly lower than the 
real sample temperature because of heat losses. The transition temperature determined from 
measurements on heating on C2 was 754 K. This is within the range of temperatures for the 
transition measured by calorimetric methods [l], but lower than the value of 763 K preferred 
by other workers [14]. Given that a range of values of the transition temperature have been 
reported, we continue to use the value of 754 K here. Measurements were also obtained on 
cooling, and we found that there was a lag of 5 K on the temperature readings for the data 
of cooling below the transition temperature, as determined by comparing cell parameters. 
We therefore corrected the measured temperatures for these data sets by a simple constant 
addition of 5 K. The temperatures measured in the HRPD experiments were not consistent 
with those measured in the C2 data, so we calibrated the HRPD temperature measurements 
by comparing the unit cell angle ,3 obtained from the structure refinements of the data from 
both HRPD and C2. The calibration simply required subtracting a small constant value 
from the measured temperatures. 

4. Structure analysis 

4.1. Analysis method and structure refinements 

The data reduction for both instruments was carried out using the GENIE graphics program 
[I51 with special routines written by the HRPD instrument scientists and ourselves. 

The structure analysis was performed using the Rietveld refinement method with the 
program REFINE 1161, which is based on the CCSL library 1171. As we have discussed in 
section 2. we have used the total peaks (the sum of the Bragg and diffuse scattering peaks) 
rather than only the Bragg peaks in our Rietveld analysis, and we recall our comment that 
we expect this to give the same structural information as we would get from analysis of 
the Bragg peaks alone, except that the temperature factors will be those due only to the 
non-critical phonon modes. The problem with using the total peaks is that the profiles 
of the peaks are not simply described by the resolution function, and we expect to see 
an (h k &dependent broadening. This tumed out not to be a severe problem. since the 
broadening of the peaks due to the diffuse scattering is only significant at temperatures 
within a few degrees of the transition temperature: the widths of the diffuse peaks were 
not very much larger than the resolution function and were absorbed into the adjustable 
lineshape parameters. We do not expect this broadening to have any effect on the fitted 
values of the cell parameters, although there might be some residual effect on the fitted 
values of the atomic coordinates and temperature factors. Anticipating the results presented 
below, we found that at temperatures close to the transition temperature the refined values 
of the temperature factors became very large. In the refinements of the total scattering, these 
are the non-critical contributions to the total temperature factor in the sense of equation (9), 
which are not a priori expected to diverge as a result of the lattice melting. Nevertheless, 
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Table 2. Refined values of the unit cell parameters for the monoclinic @-phase (space group 
C2/m). The data obtained f" C2 are shown in the upper section of the table. and lhe d a  from 
HRPD are shown in the lower section. The emrs  on the determination of the lattice parameters 
an of the order of 6 x IO4 k, at 605 K rising to 2 x k, close to T,. Corresponding emrs 
in @ range from 4 x 10-3' to 2 x IO-*' as T -+ T,. 

605 
625 
645 
664 
684 
699 
703 
718 
723 
737 
74 1 
746 
749 
75 1 
611 
655 
673 
699 
743 - 

8.97605 
8.98459 
8.992 47 
8.99881 
9.00640 
9.01120 
9.01029 
9.01203 
9.01767 
9.015 16 
9.02221 
9.01791 
9.01 1 40 
9.01859 
8.986 11 
9.002 89 
9.01024 
9.01852 
9.030 36 

5.25081 
5.251 26 
5.247 09 
5.243 81 
5.237 93 
5.230 95 
5.231 16 
5.223 04 
5.225 34 
5.209 07 
5.21862 
5.21335 
5.20590 
5.20628 
5.25645 
5,248 65 
5.24430 
5.235 68 
5.21574 - 

6.21057 
6.23259 
6.261 24 
6.286 80 
6.31374 
6.34223 
6.34548 
6375 09 
6.37978 
6.40528 
6.42290 
6.42992 
6.431 32 
6.441 72 
622028 
6.280 12 
6.305 35 
6.349 12 
6.437 77 

99.327 
98.870 
98.274 
97.689 
96.973 
96.193 
96.062 
95.167 
94.927 
93.705 
93.133 
92,574 
92.075 
91.603 
99.178 
97.951 
97.349 
96.184 
92.631 - 

we found that these temperature factors did become very large, and as a consequence the 
fitted values of the atomic fractional coordinates will not be of high accuracy. 

The background in the spectra, which was always strong compared to the signal, was 
represented by a Chebychev polynomial with fitted parameters. We assumed Gaussian line 
shapes with the standard U, V, W description of the angular dependence of the peak widths 
[NI, noting that the parameters U, V, W will be affected by the broadening due to lattice 
melting. 

The results of the structure refinements are given in tables 2-4. The structures obtained 
from the refinements of our data obtained at the lowest and highest temperatures are shown 
in figure 1. 

4.2. Spontaneous strains and the order parameter 

The temperature dependences of the unit cell parameters are shown in figure 2, and the data 
are given in table 2. These data were analysed by defining the following spontaneous strain 
components: 

a sin p' 
t, = - - 1  

5 

b 
t 2 = - - 1  

bo 
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Table 3. Refined values of the alomic k t i o n a l  c0ordin;Ues (x IO4) for the monoclinic p-phase 
(space group C2/m). The data obtained from C2 are shown in the upper section of the table, 
and the data from HRPD are shown in the lower section. For Na(3) ermrs m g c  from 1 x 
to 6 x IO-' as T + T,. For all other atoms the errors are lower, ranging from 1 x lo-' to 
8 10-3. 

Na(3) C O(1) 0(2) 

T (K) x L X z x Y Z  x z 

605 
625 
645 
664 
684 
699 
703 
718 
723 
737 
741 
746 
749 
751 
611 
655 
673 
699 
743 

1739 7509 1626 
I737 7569 1635 
1744 7517 1635 
1698 7511 1643 
1737 7411 1629 
I752 7641 1628 
1830 7630 1554 
1719 7599 1633 
1158 7612 1596 
1700 7672 1759 
1710 7633 1589 
1708 7556 1574 
1740 7787 1779 
1631 7557 1550 
1766 7536 1632 
1724 7557 1580 
1661 7704 1646 
1694 7617 1635 
1550 7404 I593 

2475 
2504 
2507 
2535 
2536 
2501 
2450 
2449 
2436 
2506 
2438 
2383 
2411 
2422 
2481 
245 1 
2506 
2546 
2490 

1034 2976 
1025 2966 
1016 2997 
1017 3 0 3  
1032 2985 
1026 3020 
994 3018 

1045 3053 
1015 3012 
1123 2943 
952 3019 
969 3047 

1129 3008 
820 3069 

1005 2930 
979 2975 

1034 2988 
1023 2970 
959 3021 

2828 2924 1825 
7.783 2919 1838 
2807 2918 1908 
2798 2891 1899 
2182 2926 1990 
2797 2903 2001 
2746 2900 2047 
2744 2902 2024 
2725 2903 2127 
2659 2897 2018 
2647 2893 2334 
2561 2896 2466 
2598 2928 2115 
2410 2867 2243 
2808 2957 1866 
2744 2916 1847 
2825 2881 1727 
2745 2950 1922 
2549 3083 2257 

Table 4. Refined values of the cell parameten and atomic fracnonal coordinate x for the oxygen 
atom (x104) in the hexagonal a-phase (space group P63jmme) using data obtained from U. 
(The fractional coordinates of the oxygen atoms are x ,  --x, a: see table 1.) Errors are of the 
order of 6 x IOw4 8, for lhe lattice parameters and 6 x for the oxygen positional parameters 
at dl temperahms measured. 

T (K) 
756 
161 
765 
770 
775 
780 
800 
828 

- a (8,) 

5" 84 
5.20705 
5.20692 
5.207 56 
5.207 49 
5.20746 
5.20873 
5.20994 

c (A) 
6.45403 
6.45925 
6.46571 
6.471 37 
6.476 89 
6.481 97 
6.503 00 
6.532 50 

x (oxygen) 

7958 
7958 
7976 
7979 
7978 
7979 
7982 
7982 

876 5.21095 6.58120 7974 
972 5.21304 6.67632 7964 

a C O S T  
€5 = - 

ao 

where m, bo and CO are the values based on the hexagonal phase extrapolated below the 
hansition temperature (m = .&o) assuming a linear temperature dependence, shown as the 
straight lines in figure 2. The temperature dependences of the spontaneous strain components 
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TEMPERATURE IKI 

Nmre 2. (U) Temperature dependence 
of lhe monoclinic unit cell panmeters 
o , l d  and bm, and the hexagonal unit 
cell parameter ah. The straight line is 
the best fil to oh extrapolated to lower 
temperatures, defined m bo in the text. (b)  
Temperature dependence of the monoclinic 
unit cell parameter e, and lhe hexagonal 
unit cell parameter q. The straight line 
is lhe best fit to ch extrapolated to lower 
temperatures. defined as CQ in the text. 

are shown in figure 3. The largest component is € 5 ,  which from symmetry is expected to 
behave as the order parameter. This shear strain is easily seen in figure 1. We have fitted 
the temperature dependence of €5 to a function of the form 

6: = A((1 + B(T'- T))"* - 1). (18) 

(19) 

This equation follows from a Landau free energy function of the form 

It is not possible to isolate the values of q2, rl4 and 116 solely from the structural data, but 
it is possible to calculate the ratios between these parameters, as defined by A and B of 
equation (18). The fitted values are 

G(65) = 4 1 ) z V  - Tck: + $v,c: + a ~ 5 .  6 

1)4 A = - = (2.72 f 0.05) x IO-' 
2% 

B = - -  41)21)a - (1.92f 0.04) x IO-' K-' (21) 

(22) 
1): 

Tc = 753.99 f 0.04 K. 
The quartic coefficient 774 iS positive but the value of the sixth-order coefficient 76 is 
significant. This suggests that the transition may be close to being first order. The fitted 
function is shown in figure 4. This graph shows a smooth extrapolation to zero, which is 
consistent with a continuous second-order phase transition. 

The other strain components are coupled with 65 to quadratic and higher order. We 
have fitted them to polynomials of the form 

(23) 
4 cj = a& i a4e5. 
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Figure 3. Temperature dependence of the spontaneous strain components C L ,  ti, €3 and €5. The 
curve for €5 is the result of fitting equation (18) to the data, and the CUNS for 6 1 ,  €2 and €3 are 
the results of firting to equations (23) and (18). 

Table 5. Coefficients of the polynomial strain fits, as defined in equdon (10). 

Strain a2 a4 

<I -0.46 h 0.01 -6.9 * 0.4 
€2 -0.50 h 0.01 -4.6 h 0.5 
€3 -1.01 iO.01  18.1 h0.7 

The results are given in table 5, and are shown as the curves in figure 3. 

4.3. Internal structural distom'ons 

Detailed analysis of the temperature dependence of the atomic coordinates has shown that 
the significant atomic displacements apart from the shear strain are associated with the 
tilting of the CO3 groups. This tilt is easily seen in figure 1. In figure 5 we show the 
temperature dependence of the tilt angle of the carbonate groups, &. If all bond lengths 
remained unchanged as a function of temperature, & should follow 

where IQ.O is the 0-0 distance within the CO3 group. In fact equation (24) underestimates 
the size of &. Experimentally we find that sin& zz (3.1 ?~0.2)~5. whereas from the bond 
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lengths we would expect that sin& = 2.465. This suggests that there is some distortion of 
the Na06 octahedra, consistent with the observation that the c cell parameter changes quite 
markedly with temperature. 
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Figure 4. Temperature dependence of 6: with the curve fitted using equation (23) 
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Figure 5. Temperature dependence of the CO1 tilt angle. k.  

4.4. Temperature factors 

In figure 6 we plot the inverse of the effective isotropic temperature factor of each atom as a 
function of temperature, averaging the results for the pairs of atoms that become equivalent 
in the hexagonal phase-we found no significant differences in the values for such pairs 
within the statistical errors. We again remind the reader that these temperature factors 
contain only the effects of the non-critical modes, and are described by equation (9). Values 
of temperature factors obtained from Rietveld refinement can be unreliable as a result of 
correlations within the refinements and the effects of neutron absorption, and we therefore 
do not attach quantitative significance to the absolute values we have obtained. However, 
the consistency from measurement to measurement shows that the qualitative trends in the 
temperature factors are reliable. 
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Figure I. HRPD specha a1 three lemperatures showing the melting and recovery of Bmgg peab. 
The peak in the lop spec" is the hexagonal (202) Brag reflection. The peaks marked as 
1-4 in  the middle and bohom spectra are from the monoclinic Bragg reflections (zO2). (222). 
(222) and (402) respectively. 

The most st&ng behaviour is that of the carbon atom, whose temperature factor appears 
almost to diverge at the transition temperature. The octahedrally coordinated sodium atoms 
Na(l)/Na(Z)/Na(I), and the oxygen atoms, show a less dramatic behaviour. Any divergence 
that may be present appears to be washed out and the temperature factors show more of 
a step function behaviour across Tc. We note that this change may arise from parameter 
correlations that are different in the refinements of the monoclinic and hexagonal structures. 
The temperature factor of Na(3)MaP) is large at all temperatures, as expected from the 
fact that it occupies a cavity larger than its ionic radius, but the temperature factor increases 
significantly at the transition temperature. 

5. Discussion of the structural aspects of the phase transition 

Our measurements and analysis presented in the previous section have shown that the cr- 
fl  phase transition in sodium carbonate is completely described by a coupled spontaneous 
shear strain €5 and rotation of the carbonate groups, with additional strains coupled to higher 
order. We have found no evidence for any discontinuity at the transition temperature, and our 
fitted functional form for the temperature dependence of €5 within the framework of Landau 
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theory is consistent with a second-order phase transition. Weak logarithmic corrections to 
the temperature dependence of the order parameter of the familiar second-order, m = 1 
ferroelastic transition are expected for the case of the m = 2 ferroelastic material 13, 6, 71. 
We find no evidence of these from our data in the temperature range measured. This 
indicates that either their magnitude is either extremely weak andlor they only become 
apparent over a very small temperature range near Tc. 

There is often an ambiguity in the question of the driving mechanism of any ferroelastic 
phase transition. If there is a linear coupling between the spontaneous shear strain and 
another order parameter, necessarily an optic mode distortion, then the corresponding elastic 
constant (in this case Ca) will automatically fall to zero at the transition temperature. Thus 
we are faced with the question of whether the acoustic instability is the driving mechanism 
for the phase transition or whether it simply follows an optic instability. In the case of 
sodium carbonate we have previously been able to answer this question unambiguously, 
and we found that the transition is driven by the Cs acoustic instability [ 191. Our argument 
rests on what we call a rigid-bondmodel (RBM), which is a generalization of the rigid-unit- 
mode model that has been successfully applied to the study of phase transitions in silicates 
and other network solids [19, 20, 21, 22, 231. In the RBM we assume that all nearest- 
neighbour contacts are perfectly rigid-this is the limit that the longitudinal force constants 
for nearest-neighbour contacts are much larger than the transverse force constants-and 
we search for any low-energy distortions that can occur within the RBM constraints. Our 
search takes the form of a lattice dynamics calculation for the hexagonal phase, with strong 
harmonic nearest-neighbour interactions, and three body interactions to preserve the shapes 
of the NaO6 octahedra and carbonate groups. We exclude any long-range forces and we 
did not include the weakly bound Na(I1) ion. The results of this calculation showed that 
the C, transverse acoustic modes are soft for all wave vectors in the a*-b" plane, and that 
the optic mode that gives rise to the rotations of the carbonate groups is not a low-energy 
mode. The ability of the columns of NaO6 octahedra to move up and down with respect to 
nearest-neighbour columns, being loosely hinged by the shared carbonate groups, reflects a 
soft shear mode, as anticipated by De Wolff and Tuinstra 111. On the other hand, for the 
carbonate rotations to form a low-energy optic mode requires that there should be a way 
of decoupling this motion from the slower shear mode. The structure of sodium carbonate 
does not allow this possibility, as indicated by the RBM calculations. Thus we conclude 
that for sodium carbonate the primary instability is the C, shear mode, and the carbonate 
rotations simply follow rather than drive the shear strain. 

The importance of this result is that it demonstrates that sodium carbonate is a proper 
m = 2 ferroelastic, and is therefore the first continuous example of such a transition. It also 
demonstrates that the lattice melting effect is a direct consequence of the dimensionality of 
the order parameter. 

6. ObServalion of the effects of lattice melting 

6.1. Qualitative observations 

The lattice melting in NaZCO, produces a striking effect upon the powder diffraction 
spectrum, as seen in figure 7. Spectra obtained on HRPD are shown for temperatures above, 
just below and well below Tc. The Bragg peak in the hexagonal structure is (20 2), which in 
cooling into the monoclinic phase splits into the (ZOZ), (?22), (222) and (402) reflections. 
On cooling towards T, the intensity of the Bragg peak decreases, and the intensity of the 
broader diffise scattering increases, until at T, the Bragg peak has completely vanished. 
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Figure 8. (a) S c h e m i c  diagram of the a*** r e c i p d  lattice net of NazC03 near Tc. All 
reciprocal lattice points with a component in c* nre broadened into discs in an&* due to the 
condensation of the mansverse acoustic soft modes, which have wave-vectors in this plane and 
eigenvectors along c'. Two reciprocal lattice points with the same IQ1 a ~ e  shown: one (Qm) 
along c* and one ( Q M ~  with a &e component in the a'&' plane. The four doued circles 
are of radii fixed by the minimum and maximum IQ[ at which the reflection conditions for both 
r e c i p d  lattice discs could be satisfied. The widths of these minim and maxim about the 
mean IQ1 are 2 AQwr and 2 AQ,,. (b) Schematic diagram for the case of constant-wavelength 
powder difbcdon. The f igs  a ~ e  now uniform diseibutions of the two reflections due to the 
powder averaging of all the reflections at all orientations with respect to the incident beam. The 
Ewald sphere of radius Zn/A intersects both these IQ1 reflections, and the diffracted beams exit 
at 28 to the incident beam. The inherent line width in 28 (ignoring inst"ental contributions) 
reflects the size and shapc of the recipmcal Mice disc, Reflections with a large component in 
the 0.4. plane such as kke show a strong broadening, whereas reflections with IQ1 normal to 
the plane of softening see only the intrinsic, unbroadened line width. 

The B r a g  peaks reappear on cooling below Tc. 
This lattice melting can be seen in figure 1 of De Wolff and Tuinstra [l], which shows 

a Guinier-Lend photograph of sodium carbonate taken over a wide range of temperatures. 
Close to the monoclinic-hexazonal phase transition the traces of the Bragg peaks become 
blurred (apart from the (002) reflection). In particular, the effect shown in figure 7 of 
the present paper is clearly seen in the Guinier-LennC photograph. In the figure caption 
that accompanies the Guinier-Lend photograph in [l] the blurring is explained as vertical 
smearing due to the camera slit height, and whilst this is doubtless a contributary factor, 
the comparison with our figure 7 shows that this is not the sole explanation! 

6.2. Lineshape analysis 

We have already noted that the soft acoustic modes that produce the diffuse scattering are the 
transverse acoustic phonons with wave vectors in the a'4' plane and eigenvectors parallel 
to [00 11. In reciprocal space the diffuse scattering is in the shape of discs perpendicular 



Phase transition in NaZCO3 441 1 

Figure 8. (Continued) 

to [00 11 centred at the reciprocal lattice vectors with e # 0. A schematic view of an hot 
reciprocal lattice section is depicted in figure 8(u). The condition depending on t arises 
from the fact that the scattering intensity is determined by Q . e, where Q is the scattering 
vector and e is a vector along the direction of atomic motion. Since e is along [00 I], the 
diffuse scattering is only observed if there is a component of Q along the same direction. 
In a powder diffraction experiment, the reciprocal lattice is at all orientations with respect 
to the incident beam. This is depicted schematically in figure 8(b). The broadening effect 
at T Fii T,, due to the shape of the reciprocal lattice ‘discs’, is preserved in a powder 
diffraction experiment. For reflections of the form (OOe), Qml is normal to the discs 
and so no broadening is seen. For reflections of the form (h k 0) Q . e is zero and again 
broadening is not observed. However, for all other reflections (h k e )  not subject to these 
conditions considerable broadening is observed. The strongest peaks of diffuse scattering 
were observed at the (101), (201), (301). (202). (312), (103) and (203) reciprocal 
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lattice vectors. The widths of the peaks in the diffraction pattern were significantly broader 
than the instrumental resolution. 

Mayer and Cowley [5] have shown that at Tc, when the Bragg component is zero, the 
diffuse scattering profile should have a power law lineshape. However, at temperatures away 
from T,, when the Bragg intensities are no longer zero, there is no theoretical prediction 
for the lineshape of the diffuse scattering. We found that within the accuracy of the data 
the profiles of the diffuse scattering can be represented by the function 

r(Q) = I(kkL)exp(- I Q  - QCkkt) l  /K(kkt)) (25) 

where Q = IQI, Q(hke) is the scattering vector for the Bragg reflection ( h k e )  and q k k e )  
gives the width of the diffuse scattering. This profile function was convoluted with the 
Gaussian experimental resolution functions for each (h k e) ,  which were determined from 
the high-temperature diffraction patterns. Other functions we tested, including Lorentzian 
functions, were found to give an equally good representation of the diffise scattering peaks, 
but Gaussian profiles were clearly not appropriatt 

For each peak, K @ k e )  was determined at 756 K, where no Bragg component was 
observed, and then left fixed in the analysis of the scattering at higher temperatures. When 
the value of K ( k t ( )  was fitted at higher temperatures, where a significant Bragg component 
is also present, it was found not to vary outside the limits of the errors. A linear background 
was included, and the Bragg peaks were fitted using the profile of the resolution function 
determined at high temperatures. In general the fits gave values of x 2  N 1.0, apart from 
the (1 0 1) peak where some trouble was encountered with the background owing to the 
proximity of the strong diffraction peak from the furnace. This treatment allowed us to 
extract the temperature dependence of the relative contributions of the Bragg scattering and 
the diffuse scattering. Owing to the large number of overlapping peaks in the monoclinic 
phase, especially close to T,, most of our analysis was carried out on the data from the 
high-temperature hexagonal phase. Only one peak, ( I  0 l),  was analysed completely above 
and below T,. 
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6.3. Results 

Results of the fitting procedure for the (1 0 I), (202) and (3 1 2) peaks are shown in figure 9 
for the data at 756 K, which is extremely close to 7" At this temperature, no Bragg 
contribution was observable, and the fitted curves shown in the diagram solely represent 
the exponential profile convoluted with the resolution function. The ( I  0 1) and (3 12) 
peaks have, respectively, the minimum and maximum values of the scattering vector that 
were analysed. The observed widths of the three peaks in the diagram are dependent on the 
resolution function and the changing effect of the powder average on the diffuse component. 

In figure 10 we further illustrate the analysis procedure by showing the evolution of 
the scattered intensities for the (202) peak. As the temperature is increased above T,, the 
diffuse component decreases rapidly in intensity and the width of the total scattering at the 
(202) position decreases towards the pure Bragg width given by the resolution function. 
At 799 K , it can be seen that the intensity of the diffuse component is very small compared 
to that of the Bragg part, 

In figure 11 we show the integrated intensities of the Bragg and diffuse components 
of the ( I  O l ) ,  (202) and (1 03) peaks as a function of temperature. These three peaks 
were chosen since they illustrate most clearly the effect of increasing e ,  which is discussed 
in the next paragraph. The intensity of the Bragg component of each peak falls to zero 
on approaching T,, while the intensity of the diffuse component reaches its maximum at 
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Figure 9. The (101), (202) and (3 12) peaks at 
756 K. which is one degree above T,. The fitted 
curves represent the pure diffuse scattering; no Bragg 
component is present. 
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Figure 10. The temperature evolution of the line profile 
of the (202) peak above T,. The broken line shows 
the exponential component and the full line shows the 
complete analysed profile with the Bmgg component 
included. 

this point. The total intensity associated with each Bragg position remains approximately 
constant with temperature, as shown in figure 11 even though the process which occurs is 
in effect that of a delta function being replaced by a broad peak. This is the experimental 
support for the derivation of equation (12). 

At 756 K , which is the closest temperature to T, for which we have data, the spectra 
were fitted exeemely well in all cases with just the diffuse component. as shown in 
figure 9. Any attempt to include the Bragg component into the fitting procedure at this 
temperature always led to it having negligible intensity, and this was found to be the 
case for all of the seven peaks which were analysed. Therefore, within the experimental 
resolution, the Bragg intensity at this temperature is vanishingly small or zero. We may 
then conclude that the mean squared atomic displacements diverge completely along the 
crystallographic [00 11 direction, and that long-range order is lost. Complete lattice melting 
is accomplished at this point. 

Since there are relatively few overlapping peaks below T, around the hexagonal (1 0 1) 
position in NaZC03, a partial analysis of the diffuse and Bragg intensities associated with 
this reflection is possible. In figure 12 we show the data from figure 1 1  for the (1 0 1) peak 
around the transition, together with data points representing this partial analysis for one 
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(1 0 1) Q,=0.97 8;' 

(2 0 2)  $,=1.94 x-' 

(1 0 3) Q,=2.91 i-' 

Temperature (K) 
Figure 11. Tempcnfure depcndence of the diffuse scattering (open circles) and Bragg scattering 
(fuU circles) intensities for ( I  0 I ) ,  (202) and (I 03) in the hexagonal phase The closed squares 
represent the total integrated scnttering (diffuse + Bragg) and show that to first approximarion 
this is constant through the transition. The curves represent guides to the eye, and error bars 
are shown where the enut exceeds the size of the data point. 

temperature below T,. The recovery of the Bragg component on cooling below T, that is 
seen in this figure is consistent with the situation shown in figure I. 

Returning to figure 11, it can be seen that the behaviours of the Bragg and diffuse 
components are systematically different for each of the three peaks, which have different 
values of Qz (= 2ne/c), ihe component of the scattering vector that is parallel to c'. 
The changes in the Bragg and diffuse scattering components occur over a smaller range 
of temperatures the smaller the value of Q,. This simply reflects the fact that the changes 
are associated with the divergence of the temperature factors, since the Bragg intensities 
with larger values of Q, will be more sensitive to the mean square atomic displacements 
along [00 11. Thus the divergence of the temperature factors associated with the lattice 
melting will be observed further from T, in the reflections with larger values of Qz. We 
have calculated an approximate temperature dependence of the part of the B& temperature 
factor (i.e. the part of B33 that arises from the soft acoustic modes) from the three reflections 
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Figure U As for figure 11 for the (I 0 1) peak showing data below Tc 

shown in figure 11 using equation (13) and noting that 

B$ = WA/eZ. (26) 
Within error the temperature dependence of Bt3 should be the same for each reflection, 
given that the effect of the acoustic modes is to give each atom the same displacement. 
The temperature dependence of B$ is shown in figure 13, and the divergence on cooling 
towards T, is clear. Further detailed analysis of these data is not practical since the accuracy 
is not good enough, and is worse in the important limits where hragg >> I D H ~ ~  and 
I ~ m g g  << I~ifi.. 

Figure 13. Temperature dependence of B A  

Mayer and Cowley 151 have shown that at T, the expected line profile of the diffuse 
scattering is proportional to IQ - Q c h p ~ I - ' .  where the exponent a is dependent on Q:. 
The numerical solutious to the complicated expressions indicate that, in a singlecrystal 
experiment, the square root of the diffuse scattering width, $,it), should be roughly 
proportional to Qz. We have calculated r ( h p g ,  from our values of qhkC), by effectively 
reversing the powder average. In figure 14 we show that the expected approximate 
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proportionality of r$ie1 to Q, holds. This result provides some validation of the Mayer- 
Cowley profiles. 

Finally we compare our results with those from the single-crystal studies of the second- 
order phase transition in (KBr)o.35(KCN),,,sS 191, which we believe to be the only other 
system where similar effects have been observed. In this case it was found that at T, the 
diffuse intensity dominates, but in contrast to our observations in NaZC03 a residual Bragg 
component remained. This is believed to be due to the random defect fields present in these 
mixed systems, which tend to preserve long-range order [IO]. Thus the ferroelastic phase 
transition in NazCO3 is the first example where complete lattice melting has been observed. 
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7. Conclusions 

We have presented experimental results for the crystallographic aspects of the ferroelastic 
phase transition in sodium carbonate with higher temperature resolution than before. We 
have demonstrated that the primary order parameter is the shear strain 65, and the other 
strains couple to €5 to higher order. The only significant rearrangement of the atomic 
positions is associated with the tilt of the carbonate groups, which act as hinges between 
the columns of NaO6 octahedra. We have also demonstrated that the phase transition is 
second order with no significant non-classical critical behaviour. Our most striking results 
are the observations of the effects of lattice melting, associated with the divergence of 
the temperature factors predicted for continuous m = 2 ferroelastic phase transitions. We 
believe that our results are the first observations of complete lattice melting. 

The fact that KzC03 also displays lattice melting is a clear indication that it is the 
dimensionality of the order parameter that is responsible for the effect. Although the 01- 

phases of K2CO3 and Na2CO3 are isosbuctural and the same order parameter is responsible 
for the two transitions, the detailed ferroic distortions differ and KzC03 transforms into 
C2/c-an alternative basis of El,. 

The neutron powder diffraction technique is necessarily limited in its scope. Having 
demonstrated in this study that sodium carbonate is an ideal prototype material for the 
analysis of m = 2 ferroelastic phase transitions, it would now be worthwhile attempting 
careful single-crystal diffraction studies of sodium carbonate at a number of temperatures 
in the vicinity of the phase transition in order to obtain accurate information about the line 
profiles and temperature factors. 
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