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Abstract. Detailed neutron powder diffraction data are presented which show that the phase
transition (P63 /mmec—C2/m) at 754 K in sodium carbonate, NagCOs, is a second-order proper
ferroelastic m = 2 transition, The order parameter is characterized by the shear strain es, with
a coupled rotation of the carbonate groups. The diffraction peaks show clear evidence for the
divergence of the temperature factors at the transition temperature due to the softening of the
acoustic modes at small wave vectors. This results in the appearance of broad diffuse scattering
at Bragg positions at the expense of the intensities of the Bragg peaks. We call this process
‘lattice melting’.

1. Introduction

Sodium carbonate, Na;CO3, has been studied in some detail recently because of the
important incommensurate phase fransition at 633 K [1, 2]. Less attention has been paid
to the hexagonal-monoclinic phase transition at ~760 K, The symmetry change from
P6g/mmc to C2/m, with no change in the size of the primitive cell, suggests that the
phase transition is a proper ferroelastic transition with a two-dimensional order parameter
[3, 4]. The dimension of the order parameter is important, since it defines a distinct class
of ferroelastic materials. A Guinier-Lenné x-ray powder diffraction photograph shown by
De Wolff and Tuinstra [1] suggests that the transition in NayCO; might be second order.
There are only a few well characterized examples of this class of ferroelastic material, such
as KCN and KCN:KBr mixtures, and KAIF,, and there are apparently no other known
examples of pure systems where this type of phase transition is second order. In the light
of recent theoretical work on second-order phase transitions of this type [5], it is clear that
detailed crystallographic studies of a number of such systems are needed. Thus we report
here a study of the hexagonal-monoclinic phase transition in sodium carbonate using high-
resolution neutron powder diffraction, and address two issues. Firstly, we are interested
in the characterization of the transition—for example, what is the primary instability, and
is the transition really second order? Secondly, we are interested in the effects of the
phase transition on the shapes of the Bragg peaks and crystatlographic temperature factors,
following the recent theoretical analysis of Mayer and Cowley [5] appropriate for this type
of material, In this latter regard, we believe that the results we will present below are among
the most striking phenomena found in any ferroelastic material.
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Table 1. Representations of the atomic coordinates in the 8- and «-phases of sodium carbonate.
The coordinates correspond to the usual settings of the two space groups.

p-phase (C2/m)  a-phase (P63/mmc)

Na(l) ©0,0,0 Nal 0,00
Na2) 0,0, (Na®) 0.0,3)
Na(3) =x, % z  Na(ID i % %
C xnpz € 339
o xyz 0O X, —X, %

02 x4z © s+t

The crystal structure of the high-temperature hexagonal «-phase of sodium carbonate
is represented in figure 1. One of the sedium atoms, Na(I}), is octahedrally coordinated
to the oxygen atoms, and the NaQOg octahedra form face sharing columns along [001].
The columns are interconnected by the oxygen atoms which are shared with the carbonate
groups, The second sodium atom, Na(Il), is located in a larger site above the carbon atoms.
The crystal structure of the low-temperature monoclinic S-phase is shown in figure 1{d).
The individual columns of NaQg octahedra do not distort significantly as a result of the «—f8
phase transition, but neighbouring columns move along [001] with respect to each other on
cooling through the transition, hinged by the carbonate groups which rotate in phase with
the shear strain. The sodium atoms Na(1) and Na(2), which are symmetrically distinct in
the monoclinic structure, are related to Na(l) in the hexagonal phase, and Na(3) is related
to Na(Il}. The two oxygen atoms O(1) and O(2) are equivalent in the hexagonal phase. The
relationship between the atomic coordinates of both phases is summarized in table 1. The
structure of the S-phase has previously been measured at cnly three temperatures, but our
new measurements indicate that there are no other significant changes that occur through
the phase transition.

The active representation for the change of symmetry in the hexagonal-monoclinic phase
transition is the two-dimensional representation E;;. One of the two components of this
generates the C2/m monoclinic structure found in sodium carbonate, this operation being
characterized by the shear strain €5, whereas the other generates a different monoclinic
structure of space group C2/c, as found in potassium carbonate, K3COs [1]. The symmetry
allows for a second-order phase transition in the sense of Landau theory [4]. The resulis
presented below show that there is no measureable first-order discontinuity in Na;COs, and
that the phase transition can be described by a Landau free energy. The transition can
be generated by softening of the Cyy elastic constant, which leads to the softening of all
the transverse acoustic modes that have wave vectors in the a*—b* plane and eigenvectors
polarized along [001]. This softening of the acoustic modes over a two-dimensional sector of
reciprocal space defines a distinct class of ferroelastic phase transitions, denoted as m = 2
by Folk er @l [6, 7], which is different from the more common case where the acoustic
modes only soften along certain directions in reciprocal space (m = 1).

The results we present in this paper show that sodium carbonate is a particularly good
example for the study of phenomena associated with second-order m = 2 ferroelastic phase
transitions. In particular we are interested in the prediction of logarithmic divergence of
the temperature factors (equivalent to the mean squared atomic displacements) that arises
from the softening of the acoustic modes for wave vectors in a plane in reciprocal space
[5, 6, 7). This canses a complete loss of long-range order at the transition temperature,
and a subsequent vanishing of the intensities of the Bragg peaks. Since the divergence of
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c)

Figure 1. (a) Plan of the structure of the hexagonal a-phase of sodium carbonate viewed down
[001], showing the Na(I)Og octahedra and the carbonate groups (triangles). The position of
the Na(il) atom is directly above the carbon atom, and is indicated by the shaded sphere. (b)
Perspective view of the structure of the hexagonal a-phase of sodium carbonate, showing the
carbonate groups (triangles) acting as hinges connecting the columns of face sharing Na(I)Og¢
octahedra. (c) Plan of the structure of the hexagonal «-phase of sodium carbonate viewed down
{0101, for comparison with (d). The thick lines indicate the planes of the carbonate groups. {d)
Plan of the structure of the monoclinic 8-phase of sodium carbonate viewed down [010]. In this
projection the shear strain and the coupled hinged rotations of the carbonate groups are clear,
particularly when compared with the view of the hexagonal phase from the same direction, {(c).

the temperature factors is due to the acoustic modes, which cause neighbouring atoms to
be displaced in phase by the same distance, some degree of short-range order is preserved.
The loss of long-range order at the transition temperature has some similarities to melting
[5], but unlike real melting long-range order is recovered both by heating above and by
cooling below the transition temperature. Moreover, there is no large change in the local
order nor is there significant atomic diffusion. In effect, the melting is associated with the
lattice rather than with the atomic order, and therefore we have called this effect ‘lattice
melting’ {8]. Mayer and Cowley {5] have shown that at the transition temperature the
Bragg peaks are replaced by broad peaks of diffuse scattering, and they have derived an
expression for the shape of these peaks at the transition temperature. On approaching the
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transition temperature the Bragg peaks will decrease in intensity and the peaks of diffuse
scattering will increase, Something like lattice melting has been observed in the mixed
system KCN:KBr [9], but in this case the random defects prevent the complete loss of the
Bragg peak intensities [10]. Preliminary neutron powder diffraction measurements of the
corresponding m = 2 transition in K;CO; have been made recently at Chalk River and
indicate that lattice melting occurs in this material as well. As far as we are aware all other
known examples of m = 2 ferroelastic phase transitions are first order, and in these cases
the effects of lattice melting are unlikely to be observed. Thus Nay;COj; is an ideal system
for the study of lattice melting.

The rest of the paper takes the following form. In section 2 we outline some theoretical
points concerning the scattering in the presence of lattice melting. In section 3 we describe
our experimental work. In sections 4 and 5 we describe and discuss the crystallographic
aspects of the phase transition. Finally in section 6 we consider in some detail the
phenomenon of lattice melting by analysing the temperature dependence of the profiles
of the diffraction peaks.

2. Some comments on the neutron scattering law and lattice melting

The lattice melting phenomenon outlined above involves the divergence of the temperature
factor due to the softening of an acoustic mode over a plane of wave vectors, This leads
to a loss of the intensity of the Bragg peak, which is replaced by a broad peak of diffuse
scattering. Denoting the intensities of the Bragg and diffuse scattering peaks by Ipmpg and
Ipimuse respectively, we can write the total scattering Jro as 2 sum of these two terms:

Troat = IBragg ~+ Iputuse- W

In a diffraction experiment the measured quantity, Frewr, is the total scattering integrated
over all energies, whereas the Bragg component is a delta function at zero energy. Both
terms are wriiten as

2

) @

T o = <
2

IBragg =

E b exp (iQ . rj)
j

©))

(; bexp (iQ - r,-))

where r; is the position of the jth atom (assumed to vary with time), &; is the corresponding
neetron scattering length, and Q is the scattering vector. We have neglected factors that
depend on geometry and scale factors. We can write the instantaneous position of an atom
as

r=R+u°+ut (4)

where R is the average position, u® is the displacement due to all the phonons except the
soft acoustic modes, and u* is the displacement due to the soft acoustic modes. Thus we
can rewrite the expression for the total intensity as

2
Tror = ( ) (5)

Z:bj exp (iQ - [R; +u? + u}'])
j
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that is
o = <Z bibjexp (IQ « [Ri — By]) exp (iQ - [P — uP]) exp (iQ - [us* — f])) (6)
LJ

which approximates to

Frotal =2 Eb;'bj exp (iQ - [R: — R/]) exp (iQ - [uf - u?])} {exp (iQ - [ul — uf‘])} )]
i -

where we assume a decoupling of the effects of the soft acoustic modes (the critical modes)

and the effects of all other phonons (the non-critical modes). We note that within the
harmonic approximation we ¢can now separate out the non-critical terms:

s = Y b8y o0 (@ [R: = By ]) exp (~ [WP(Q) + WP@)) exp (i@ [ - w4
t:))

where we have defined the non-critical contribution to the temperature factor

wo@ =3 (@), ©

In deriving the above expression we have also assumed that the inelastic scattering from the
displacements u® does not contribute significantly to the total scattering. This assumption
is not valid for the critical displacements u?.

We proceed with a plausibility argument. The Bragg term is given as
2

IBragg = (10)

2_biexp (iQ - B;) exp (~W (@) exp (~W/(Q)
i

where
1
wrQ) =5 (@ w)) an

As we have noted above, on approaching 7T the displacements u* diverge, so that the factor
exp(~W(@)) and hence nrgq fall to zero. Since u* is determined by the long-wavelength

acoustic modes, W{,.A(Q) will be the same for each atom in the unit cell. Moreover, we
expect that the quantity u/* — u}" will be close to zero for atoms separated over quite large

distances. Therefore we expect that < exp(i@Q « [uf‘ - u}"]) >~ 1 for all pairs of atoms, s0
that the total scattering intensity can be approximated as

T ot = Z: b;bj exp (IQ - [R, — Rj]) eXp (-— [W,O(Q) + WGO(Q)]) . (12)
i

Implicit in the argurnent is the integration over all values of Q in the vicinity of each Bragg
peak, which is justified if, as in the present case, the width of the scattering is small in
comparison with the size of the reciprocal lattice parameters. From our argument we expect
that althongh the Bragg intensity falls to zero as the critical displacements diverge, the total
intensity is unaffected—the intensity of the diffuse scattering term increases to compensate
for the loss of Bragg scattering. This tentative conclusion is supported by the data we present
below, although we recognise that our arguments do not constitute a proof of this point.
(Mikeska and Schmidt [11] claim that this result is exact, by deriving an expression for
the scattering intensity 7(€) of a two-dimensional crystal and inviting the reader to verify
that the total intensity is constant by integration of 7(€) over the region around €.) The
difference between the total scattering and the Bragg scattering is that the total scattering
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takes account of the correlation between the critical displacements, whereas the Bragg term
agsumes no correlation. These arguments suggest that there is complementary structural
information in the total and Bragg intensities. If the total scattering were analysed as if
it were Bragg scattering, it would yield the same information about the atomic positions
as would be obtained from the analysis of the Bragg intensities, expect that the refined
temperature factors would be those associated with the non-critical atomic displacements,
u}), rather than the total displacements, uj‘-) + uf'. This is the approach we have taken in
our Rietveld analysis below. The critical displacements can then be exiracted simply as

WA Q) = —%m (ﬂ) . (13)

! TFotal

3. Experimental details

3.1. Neutron powder diffraction experiments

Our neutron powder diffraction measurements were obtained using the HRPD diffractometer
at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK) and the
C2 DUALSPFEC diffractometer at the NRU reactor at Chalk River Laboratories (AECL
Research, Canada).

HRPD is a high-resolution time of flight powder diffractometer [12]. Data were
collected for flight times between 35 and 120 ms, corresponding to d spacings between
~Q07 and 2.4 A, The sample was held in a vanadium can of diameter 10 mm. The
furnace used for these measurements had a cylindrical vanadium heater that surrounded the
sample. Temperatures were measured using a Chromel-A thermocouple. Measurements
were obtained over the temperature range 5 to 1000 K, but in this paper we are only
concerned with the measurements above 600 K. Partly because of problems with the
temperature calibration on the furnace on HRPD, we did not obtain a complete set of
data around the «—f§ phase transition temperature, which is why we then obtained a new
set of data on the C2 diffractometer.

The C2 diffractometer is a high-resolution constant-wavelength powder diffractometer
with an 800-wire curved detector covering an angular range of 80° [13]. For these
experiments a wavelength of 1.50553 A was selected using an Si(53 1) monochromator,
and its value was determined using a standard powder sample of silicon. For the majority of
runs we collected data for scattering angles between 30 and 110° with two positions of the
detector separated by 0.05°. For some runs however we collected data for scattering angles
between 5 and 120° with points separated by 0.05° by using four positions of the detector,
The sample was held in a vanadium can of diameter 8§ mm. The furnace used for these
measurements had a cylindrical graphite heater that surrounded the sample in the scattering
plane. A diffraction peak from the furnace at ~25° was observed in the diffraction patterns
and excluded from the profile refinements. Temperatore was measured using a Chromel-A
thermocouple. Measurements were obtained over the temperature range 605 to 970 K.

The width of a Bragg peak in the absence of any anomalous broadening is due to two
factors: instrumental resolution, and sample properties such as particle size and internal
strains—these define an effective resolution function for the measurements. Analysis of the
{202) peak at high temperatures showed that the effective resolution function for this peak
has a width of Ad/d of 0.003 for HRPD and 0.007 for C2.

We used the same source material for the samples for the work on both diffractometers
(99.995% purity, obtained from Aldrich Chemicals, UK). We used a fresh batch of material
for each experiment, and the samples were dried thoroughly immediately before use.
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3.2. Temperature control

Due to the large scale of the sample environment equipment in a neutron diffraction
experiment, accurate measurements of the temperature are difficult, so a note on this detail
is of some value. We used two thermocouples in the C2 furnace. The thermocouple used
for temperature control was located close to the sample but not in contact with the sample or
sample mount. A second thermocouple was used to read the temperature, and was attached
to the sample at the position at which it was mounted onto the furnace. Typically we found
that the temperahire on this second thermocouple gave measurements that were 15-20 K
lower than those given by the control thermocouple, and may be slightly lower than the
real sample temperature because of heat losses. The transition temperature determined from
measurements on heating on C2 was 754 K. This is within the range of temperatures for the
transition measured by calorimetric methods [1], but lower than the value of 763 K preferred
by other workers [14]. Given that a range of values of the transition temperature have been
reported, we continue to use the value of 754 K here. Measurements were also obtained on
cooling, and we found that there was a lag of 5 K on the temperature readings for the data
of cooling below the transition temperature, as determined by comparing cell parameters.
We therefore corrected the measured temperatures for these data sets by a simple constant
addition of 5 K. The temperatures measured in the HRPD experiments were not consistent
with those measured in the C2 data, so we calibrated the HRPD temperature measurements
by comparing the unit cell angle 8 obtained from the structure refinements of the data from
both HRPD and C2. The calibration simply required subtracting a small constant valve
from the measured temperatures.

4. Structure analysis

4.1. Analysis method and structure refinements

The data reduction for both instruments was carried out using the GENIE graphics program
[15] with special routines written by the HRPD instrument scientists and ourselves.

The structure analysis was performed using the Rietveld refinement method with the
program REFINE [16], which is based on the CCSL library [17]. As we have discussed in
section 2, we have used the total peaks (the sum of the Bragg and diffuse scattering peaks)
rather than only the Bragg peaks in our Rietveld analysis, and we recall our comment that
we expect this to give the same structural information as we would get from analysis of
the Bragg peaks alone, except that the temperature factors will be those due only to the
non-critical phonon modes. The problem with using the total peaks is that the profiles
of the peaks are not simply described by the resolution function, and we expect to see
an (hk £)-dependent broadening. This turmed out not to be a severe problem, since the
broadening of the peaks due to the diffuse scattering is only significant at temperatures
within a few degrees of the transition temperature: the widths of the diffuse peaks were
not very much larger than the resolution function and were absorbed into the adjustable
fingshape parameters. We do not expect this broadening to have any effect on the fitted
valves of the cell parameters, although there might be some residual effect on the fitted
values of the atomic coordinates and temperature factors. Anticipating the results presented
below, we found that at temperatures close to the transition temperature the refined values
of the temperature factors became very large. In the refinements of the total scattering, these
are the non-critical contributions to the total temperature factor in the sense of equation (9),
which are not a priori expected to diverge as a result of the lattice melting. Nevertheless,
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Table 2. Refined values of the unit cell parameters for the monoclinic S-phase (space group
C2/m). The data obtained from C2 are shown in the upper section of the table, and the data from
HRPD are shown in the lower section. The errors on the determination of the Jattice parameters
are of (he order of 6 x 10~* A at 605 K rising to 2 x 10~* A close to T, Comesponding errors
in B range from 4 x 107" 102 % 107 as T — T;.

TE ah b (A) ¢ (A) B (deg)

605 897605 525081 621057 99327
625 898459 525126 623259 98.870
645 359247 524709 626124 98274
664 899881 524381 628680 97.689
684 900640 523793 631374  96.973
699 901120 523095 634223 96,193
703 9201029 523116 634548 96.062
g 9.01203 522304 63750% 95167
723 9.01767 522534 637978 94927
37 9.01516 520907 640528 93.705
741 9.02221 521862 642250 93.133
746 901791 521335 642992 92574
749 901140 520590 643132 92075
751 9.01859 520628 644172 91.603

611 8.98611 525645 622028 99.178
655 9.0028% 524865 628012 97951
673 901024 524430 630535 97.349
699 01852 523568 634912 96.184
743 9.03036 521574 643777 92631

we found that these temperature factors did become very large, and as a consequence the
fitted values of the atomic fractional coordinates will not be of high accuracy.

The background in the spectra, which was always strong compared to the signal, was
represented by a Chebychev polynomial with fitted parameters. We assumed Gaussian line
shapes with the standard I/, V, W description of the angular dependence of the peak widths
f18], noting that the parameters U, V, W will be affected by the broadening due to lattice
melting.

The results of the structure refinements are given in tables 2—4. The structures obtained
from the refinements of our data obtained at the lowest and highest temperatures are shown
in figure 1.

4.2. Spontaneous strains and the order parameter

The temperature dependences of the unit cell parameters are shown in figure 2, and the data
are given in table 2. These data were analysed by defining the following spontaneous strain
compaonents:

o =285 (14)
apn
b
€ = b_o -1 (15)
€3 = - (16)
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Table 3. Refined values of the atomic fractional coordinates {x 10%) for the monoclinic -phase
(space group C2/m). The data obtained from C2 are shown in the upper section of the table,
and the data from HRPD are shown in the lower section. For Na{3) errors range from 1 x 102
to 6 x 1072 as T — T.. For all other atoms the errors are lower, ranging from 1 x 1074 to

8 x 10~3,
Na(3) C (1) O2)

re =x z x z x y z x z
605 1739 7509 1626 2475 1034 2976 2828 2924 1825
€25 1737 7569 1635 2504 1025 2966 2783 2919 1838
645 1744 7517 1635 2507 1016 2997 2807 2918 1908
664 1698 7511 1643 2535 1017 3003 2798 2891 1899
684 1737 7411 1629 2536 1032 2035 2782 2926 1990
699 1752 7647 1628 2501 1026 3020 2797 2903 2001
703 1830 7630 1554 2450 994 3018 2746 2900 2047
718 1719 7599 1633 2449 1045 3053 2744 2902 2024
723 1758 7612 1596 2436 1015 3012 2725 2903 2127
737 1700 7672 1759 2506 1123 2943 2659 2897 2018
741 1710 7633 1589 2438 952 3019 2647 2893 2334
746 1708 7556 1574 2383 969 3047 2561 2896 2466
749 1740 7787 1779 2411 1129 3008 2558 2928 2115
751 1631 7557 1550 2422 820 3069 2410 2867 2243
611 1766 7536 1632 2481 1005 2930 2808 2957 1866
655 1724 7557 1580 2451 979 2975 2744 2916 1847
673 1651 7704 1646 2506 1034 2088 2825 2881 1727
699 1694 7617 1635 2546 1023 2970 2745 2950 1922
743 1550 7404 1593 2490 959 3021 2549 3083 2257

Table 4. Refined values of the cell parameters and atomic fractional coordinate x for the oxygen
atom (x10%) in the hexagonal a-phase (space group Pfs/mme) using data obtained from C2.
{The fractional coordinates of the oxygen atoms are x, —x, i; see table 1.} Errors are of the
order of 6 10~ A for the lattice parameters and 6 x [0~* for the oxypen positional parameters
at all temperatures measured.

TE a(d) ¢ (&) x (oxygen)
756 520784 6.45403 7958
761 520705 645925 7958
765 520692 646571 7976
770 520756 647137 7979
7758 520749 647689 1978
780 520746 648197 7979
300 520873 650300 7982
328 520094 553250 7982
876 521095 658120 7974
972 521304 667632 7964
*
€ = acos B
o

(17)

where ag, by and ¢ are the values based on the hexagonal phase extrapolated below the
transition temperature (2o = ~/3bo) assuming a linear temperature dependence, shown as the
straight lines in figure 2. The temperature dependences of the spontaneous strain components
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are shown in figure 3. The largest component is €5, which from symmetry is expected to
behave as the order parameter. This shear strain is easily seen in figure 1. We have fitted
the temperature dependence of €5 to a function of the form

€2 = A((1+ B(T. - T} - 1). (18)
This equation follows from a Landau free energy function of the form
Gles) = 312(T = T)el + naed + nees. (19

It is not possible to isolate the values of 12, ny and ng solely from the structural data, but
it is possible to calculate the ratios between these parameters, as defined by 4 and B of
equation {18). The fitted values are

=M (2724005 x 107 (20)
2ne

B— 4_%3;"_6 — (192 +0.04) x 10~% K-! @1
4

T, = 753.99 4 0.04 K. (22)

The quartic coefficient 74 is positive but the value of the sixth-order coefficient 74 is
significant. This suggests that the transition may be close to being first order. The fitted
function is shown in figure 4. This graph shows a smooth extrapolation to zero, which is
consistent with a continuous second-order phase transition,

The other strain components are coupled with €5 to quadratic and higher order. We
have fitted them to polynomials of the form

€; = azel + as€d. (23)
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curve for 5 is the resuit of fitting equation (18) to the data, and the curves for ¢;, €2 and ¢35 are
the results of fitting to equations (23) and (18).

Table 5. Coefficients of the polynomial strain fits, as defined in equation (10).

Strain  ap ag

€1 —046+£0.01 -69:04
€ —050+001 —-46+£05
€3 -1.01 001 181107

The results are given in table 5, and are shown as the curves in figure 3.

4.3, Internal structural distortions

Detailed analysis of the temperature dependence of the atomic coordinates has shown that
the significant atomic displacements apart from the shear strain are associated with the
tilting of the CC3 groups. This tilt is easily seen in figure 1. In figure 5 we show the
temperature dependence of the tilt angle of the carbonate groups, ¢c. If all bond Iengths
remained unchanged as a function of temperature, ¢ should follow

/3bg

sin d)c = 2

&5 (24)

where lgo is the O-0 distance within the CO3; group. In fact equation (24) underestimates
the size of ¢¢. Experimentally we find that sin¢ge = (3.1 3= 0.2)¢;, whereas from the bond
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lengths we would expect that sin ¢c = 2.4¢5. This suggests that there is some distortion of
the NaOg octahedra, consistent with the observation that the ¢ cell parameter changes guite
markedly with temperature.
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Figure 4. Temperature dependence of €} with the curve fitted using equation (23).

30 L] i L] ] 1 l i l L] I T I L] ' ¥

®
]
1

i

20 =

0

be )
T T
—_—C—
L1

0 ' IV U BEPRN S R ST A
600 620 &40 6AD 48D TOD 720 740 760
TEMPERATURE (K}

Figure 5. Temperature dependence of the COs tilt angle, $¢.

4.4. Temperature factors

In figure 6 we plot the inverse of the effective isotropic temperature factor of each atom as a
function of temperature, averaging the results for the pairs of atoms that become equivalent
in the hexagonal phase—we found no significant differences in the values for such pairs
within the statistical errors. We again remind the reader that these temperature factors
contain only the effects of the non-critical modes, and are described by equation (9). Values
of temperature factors obtained from Rietveld refinement can be unreliable as a result of
correlations within the refinements and the effects of nentron absorption, and we therefore
do not attach quantitative significance to the absolute values we have obtained. However,
the consistency from measurement to measurement shows that the qualitative trends in the
temperature factors are reliable.
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Figure 7. HRPD spectra at three temperatures showing the melting and recovery of Bragg peaks,
The peak in the top spectrum is the hexagonal (2 02) Bragg reflection. The peaks marked as
1-4 in the middle and bottom spectra are from the monoclinic Bragg reflections (402), 222),
(222) and (402) respectively.

The most striking behaviour is that of the carbon atom, whose temperature factor appears
almost to diverge at the transition temperature. The octahedrally coordinated sodium atoms
Na(1)/Na(2)/Na(l), and the oxygen atoms, show a less dramatic behaviour. Any divergence
that may be present appears to be washed out and the temperature factors show more of
a step function behaviour across T.. We note that this change may arise from parameter
correlations that are different in the refinements of the monoclinic and hexagonal structures.
The temperature factor of Na(3)/Na(ll} is large at all temperatures, as expected from the
fact that it occupies a cavity larger than its ionic radius, but the temperature factor increases
significantly at the transition temperature,

5. Discussion of the structural aspects of the phase transition

Our measurements and analysis presented in the previous section have shown that the a—
B phase transition in sodium carbonate is completely described by a coupled spontansous
shear strain €5 and rotation of the carbonate groups, with additional strains coupled to higher
order. We have found no evidence for any discontinuity at the transition temperature, and our
fitted functional form for the temperature dependence of €5 within the framework of Landau
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theory is consistent with a second-order phase transition. Weak logarithuic corrections to
the temperature dependence of the order parameter of the familiar second-order, m = 1
ferroelastic transition are expected for the case of the m = 2 ferroelastic material [3, 6, 7].
We find no evidence of these from our data in the temperature range measured. This
indicates that either their magnitude is either extremely weak and/or they only become
apparent over a very small temperature range near T..

There is often an ambiguity in the question of the driving mechanism of any ferroelastic
phase transition. If there is a linear coupling between the spontaneous shear strain and
another order parameter, necessarily an optic mode distortion, then the corresponding elastic
constant (in this case Cy4) will automatically fali to zero at the transition temperature. Thus
we are faced with the question of whether the acoustic instability is the driving mechanism
for the phase transition or whether it simply follows an optic instability. In the case of
sodium carbonate we have previously been able to answer this question unambiguously,
and we found that the transition is driven by the Cyq acoustic instability [19]. Our argument
rests on what we call a rigid-bond model (RBM), which is a generalization of the rigid-unii-
mode model that has been successfully applied to the study of phase transitions in silicates
and other network solids [19, 20, 21, 22, 23]. In the RBM we assume that all nearest-
neighbour contacts are perfectly rigid—this is the limit that the longitudinal force constants
for nearest-neighbour contacts are much larger than the transverse force constants—and
we search for any low-energy distortions that can occur within the RBM constraints. QOur
search takes the form of a lattice dynamics calculation for the hexagonal phase, with strong
harmonic nearest-neighbour interactions, and three body interactions to preserve the shapes
of the NaQy octahedra and carbonate groups. We exclude any long-range forces and we
did not include the weakly bound Na(ll} ion. The results of this calculation showed that
the Cay transverse acoustic modes are soft for all wave vectors in the a*-b* plane, and that
the optic mode that gives rise to the rotations of the carbonate groups is not a low-energy
mode. The ability of the columns of NaQg octahedra to move up and down with respect to
nearest-neighbour columns, being loosely hinged by the shared carbonate groups, reflects a
soft shear mode, as anticipated by De Wolff and Tuinstra [1]. On the other hand, for the
carbonate rotations to form a low-energy optic mode requires that there should be a way
of decoupling this motion from the slower shear mode. The structure of sodium carbonate
does not allow this possibility, as indicated by the RBM calculations. Thus we conclude
that for sodium carbonate the primary instability is the Cy4 shear mode, and the carbonate
rotations simply follow rather than drive the shear strain.

The importance of this result is that it demonstrates that sodium carbonate is a proper
m = 2 ferroelastic, and is therefore the first continuous example of such a transition. It also
demonstrates that the lattice melting effect is a direct consequence of the dimensionality of
the order parameter.

6. Observation of the effects of lattice melting

6.1. Qualitative observations

The lattice melting in NayCO; produces a striking effect upon the powder diffraction
spectrum, as seen in figure 7. Spectra obtained on HRPD are shown for temperatures above,
just below and well below T,. The Bragg peak in the hexagonal structure is (20 2), which in
cooling into the monoclinic phase splits into the (4 02), (222), (222) and (4 02) reflections.
On cooling towards T; the intensity of the Bragg peak decreases, and the intensity of the
broader diffuse scattering increases, until at T; the Bragg peak has completely vanished.
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Figure 8. (a) Schematic diagram of the a*—* reciprocal lattice net of NaaCOg near T, All
reciprocal lattice points with a component in ¢* are broadened into discs in a*—5* due to the
condensation of the transverse acoustic soft modes, which have wave-vectors in this planc and
cigenvectors along ¢*. Two reciprocal lattice points with the same |€)| are shown: one (Qooe)
along ¢* and one {Qnke) with a large component in the a*—b* plane. The four dotted circles
are of radii fixed by the minimum and maximum || at which the reflection conditions for both
reciprocal lattice discs could be satisfied. The widths of these minima and maxima about the
mean |Q)| are 2 AQqqe and 2 AQye. (b) Schematic diagram for the case of constant-wavelength
powder diffraction. The rings are now uniform distributions of the two reflections due to the
powder averaging of all the reflections at all orientations with respect to the incident beam. The
Ewald sphere of radius 2z /5 intersects both these [QQ| reflections, and the diffracted beams exit
at 20 to the incident beam, The inherent line width in 26 (ignoring instrumental contributions)
reflects the size and shape of the reciprocal lattice dise. Reflections with a large component in
the a*-b* plane such as kkf show a strong broadening, whereas reflections with ]Q] normal to
the plane of softening see only the intrinsic, unbroadened line width.

The Bragg peaks reappear on cooling below T,

This lattice melting can be seen in figure 1 of De Wolff and Tuinstra [1], which shows
a Guinier-Leoné photograph of sodium carbonate taken over a wide range of temperatures.
Close to the monoclinic—hexagonal phase transition the traces of the Bragg peaks become
blurred (apart from the (002) reflection). In particular, the effect shown in figure 7 of
the present paper is clearly seen in the Guinier-Tenné photograph. In the figure caption
that accompanies the Guinier-Lenné photograph in [1] the blurring is explained as vertical
smearing due to the camera slit height, and whilst this is doubtless a contributary factor,
the comparison with our figure 7 shows that this is not the sole explanation!

6.2. Lineshape analysis

‘We have aiready noted that the soft acoustic modes that produce the diffuse scattering are the
transverse acoustic phonons with wave vectors in the a*—b" plane and eigenvectors parallel
to [001]. In reciprocal space the diffuse scattering is in the shape of discs perpendicular
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Figure 8. (Continued)

to [00 1] centred at the reciprocal lattice vectors with £ #= 0. A schematic view of an 202
reciprocal lattice section is depicted in fisure 8(a). The condition depending on £ arises
from the fact that the scattering intensity is determined by @ - e, where €} is the scattering
vector and e is a vector along the direction of atomic motion. Since e is along [001], the
diffuse scattering is only observed if there is a component of € along the same direction,
In a powder diffraction experiment, the reciprocal lattice is at all orientations with respect
to the incident beam. This is depicted schematically in figure 8(5). The broadening effect
at T ~ T, due to the shape of the reciprocal lattice ‘discs’, is preserved in a powder
diffraction experiment. For reflections of the form (004£), Qq is normal to the discs
and 5o no broadening is seen. For reflections of the form (k£ Q) Q - e is zero and again
broadening is not observed. However, for all other reflections (k% £) not subject to these
conditions considerable broadening is observed. The strongest peaks of diffuse scattering
were observed at the (101), (201), (301), (202), (312), (103) and (203) reciprocal
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lattice vectors. The widths of the peaks in the diffraction pattern were significantly broader
than the instrumental resolution.

Mayer and Cowley [5] have shown that at T, when the Bragg component is zero, the
diffuse scattering profile should have 2 power law lineshape. However, at temperatures away
from T, when the Bragg intensities are no longer zero, there is no theoretical prediction
for the lineshape of the diffuse scattering. We found that within the accuracy of the data
the profiles of the diffuse scattering can be represented by the function

HO) = Ipkp exp(— |0 — Quin| /rwmin) (25)

where @ = |Q|, Qe is the scattering vector for the Bragg reflection (44 £) and kg g
gives the width of the diffuse scattering. This profile function was convoluted with the
Gaussian experimental resolution functions for each (4 k £), which were determined from
the high-temperature diffraction patterns. Other functions we tested, including Lorentzian
functions, were found to give an equally good representation of the diffuse scattering peaks,
but Gaussian profiles were clearly not appropriate.

For each peak, kgre was determined at 756 K, where no Bragg component was
observed, and then left fixed in the analysis of the scattering at higher temperatures. When
the value of ¢ was fitted at higher temperatures, where a significant Bragg component
is also present, it was found not to vary outside the limits of the errors. A linear background
was included, and the Bragg peaks were fitted using the profile of the resolution function
determined at high temperatures. In general the fits gave values of x? =~ 1.0, apart from
the (101) peak where some trouble was encountered with the background owing to the
proximity of the strong diffraction peak from the furnace. This treatment allowed us to
extract the temperature dependence of the relative contributions of the Bragg scattering and
the diffuse scattering. Owing to the large number of overlapping peaks in the monoclinic
phase, especially close to T, most of our analysis was carried out on the data from the
high-temperature hexagonal phase. Only one peak, (10 1), was analysed completely above
and below Tg.

6.3. Results

Results of the fitting procedure for the (101}, (202) and (3 1 2) peaks are shown in figure 9
for the data at 756 K, which is extremely close to 7. At this temperature, no Bragg
contribution was observable, and the fitted curves shown in the diagram solely represent
the exponential profile convoluted with the resolution function, The (101) and (312)
peaks have, respectively, the minimum and maximum values of the scattering vector that
were analysed. The observed widths of the three peaks in the diagram are dependent on the
resolution function and the changing effect of the powder average on the diffuse component.

In figure 10 we further illustrate the analysis procedure by showing the evolution of
the scattered intensities for the (202) peak. As the temperature is increased above T, the
diffuse component decreases rapidly in intensity and the width of the total scattering at the
(202) position decreases towards the pure Bragg width given by the resolution function.
At 799 K, it can be seen that the intensity of the diffuse component is very small compared
to that of the Bragg part.

In figure 11 we show the integrated intensities of the Bragg and diffuse components
of the (101), (202) and (103) peaks as 2 function of temperature. These three peaks
were chosen since they illustrate most clearly the effect of increasing £, which is discussed
in the next paragraph. The intensity of the Bragg component of each peak falls to zero
on approaching T, while the intensity of the diffuse component reaches its maximum at
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Figure 9. The (101}, (202) and (312) peaks at  Figure 10. The temperanire evolution of the line profile

756 K, which is one degree above T.. The fitted of the (202) peak above T.. The broken line shows

curves represent the pure diffuse scattering; no Bragg  the exponential component, and the full line shows the

component is present, complete analysed profile with the Bragg component
included.

this point. The total intensity associated with each Bragg position remains approximately
constant with temperature, as shown in figure 11 even though the process which occurs is
in effect that of a delta function being replaced by a broad peak. This is the experimental
support for the derivation of equation (12).

At 756 K , which is the closest temperature to T for which we have data, the spectra
were fitted extremely well in all cases with just the diffuse component, as shown in
figure 9. Any attempt to include the Bragg component into the fitting procedure at this
temperature always led to it having negligible intensity, and this was found to be the
case for all of the seven peaks which were analysed. Therefore, within the experimental
resolution, the Bragg intensity at this temperature is vanishingly small or zero. We may
then conclude that the mean squared atomic displacements diverge completely along the
crystailographic [0 0 1] direction, and that long-range order is lost. Complete lattice meiting
is accomplished at this point.

Since there are relatively few overlapping peaks below T, around the hexagonal (101}
position in NapCOs, a partial analysis of the diffuse and Bragg intensities associated with
this reflection is possible. In figure 12 we show the data from figure 11 for the (101) peak
around the transition, together with data points representing this partial analysis for one
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Figure 11, Temperature dependence of the diffuse scattering (open circles) and Bragg scattering
(full circles) intensities for (101), (202} and (1 03) in the hexagonal phase. The closed squares
represent the total integrated scattering (diffuse + Bragg) and show that to first approximation
this is constant through the transition. The curves represent guides to the eye, and error bars
are shown where the error exceeds the size of the data point.

temperature below T.. The recovery of the Bragg component on cooling below T that is
seen in this figure is consistent with the situation shown in figure 7.

Returning to figure 11, it can be seen that the behaviours of the Bragg and diffuse
components are systematically different for each of the three peaks, which have different
values of Q, (= 2rf/c), the component of the scattering vector that is parallel to ¢*,
The changes in the Bragg and diffuse scattering components occur over a smaller range
of temperatures the smaller the value of Q,. This simply reflects the fact that the changes
are associated with the divergence of the temperature factors, since the Bragg intensities
with larger values of Q, will be more sensitive to the mean square atomic displacements
along [001]. Thus the divergence of the temperature factors associated with the latfice
melting will be observed further from 7 in the reflections with larger values of Q,. We
have calculated an approximate temperature dependence of the part of the Bf} temperature
factor (i.c. the part of B33 that arises from the soft acoustic modes) from the three reflections
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shown in figure 11 using equation (13) and noting that

B = Whje, (26)
Within error the temperature dependence of Bj, should be the same for each reflection,
given that the effect of the acoustic modes is to give each atom the same displacement.
The temperature dependence of Bg‘s is shown in figure 13, and the divergence on cooling
towards T is clear. Further detailed analysis of these data is not practical since the accuracy
is not good enough, and is worse in the important limits where Ipmgy > Ipifiuse and
IBragg <« Ipiffuse-
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Figure 13. Temperature dependence of B{.

Mayer and Cowley [5] have shown that at T the expected line profile of the diffuse
scattering is proportional to ]Q — Qu mra, where the exponent a is dependent on Q%.
The numerical solutions to the complicated expressions indicate that, in a single-crystal
experiment, the square root of the diffuse scattering width, I‘(',fi ¢ should be roughly
proportional to Q.. We have calculated 'z 4, from our values of ¢, by effectively
reversing the powder average. In figure 14 we show that the expected approximate
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proportionality of I‘(l,{i o to @, holds. This result provides some validation of the Mayer—
Cowley profiles.

Finally we compare our results with those from the single-crystal studies of the second-
order phase transition in (KBr)g35(KCN)pgs [9]. which we believe to be the only other
system where similar effects have been observed, In this case it was found that at T the
diffuse intensity dominates, but in contrast to our observations in Na;CO; a residual Bragg
component remained. This is believed to be due to the random defect fields present in these
mixed systems, which tend to preserve long-range order [10]. Thus the ferroelastic phase
transition in NayCOs is the first example where complete lattice melting has been observed.
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Figure 14. The dependence of l"tlﬁ pon @, determined at 756 K. The straight line is the result
of a least-squares fit through the origin.
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7. Conclusions

We have presented experimental results for the crystallographic aspects of the ferroelastic
phase transition in sodium carbonate with higher temperature resolution than before. We
have demonstrated that the primary order parameter is the shear strain es, and the other
strains couple to €5 to higher order. The only significant rearrangement of the atomic
positions is associated with the tilt of the carbonate groups, which act as hinges between
the columns of NaQg octahedra. We have also demonstrated that the phase transition is
second order with no significant non-classical critical behaviour. Our most striking results
are the observations of the effects of lattice melting, associated with the divergence of
the temperature factors predicted for continuous m = 2 ferroelastic phase transitions. We
belicve that our results are the first observations of complete lattice melting,

The fact that K;COs also displays lattice melting is a clear indication that it is the
dimensionality of the order parameter that is responsible for the effect. Although the a-
phases of K;CO3 and NayCO5 are isostructural and the same order parameter is responsible
for the two transitions, the detailed ferrcic distortions differ and K;COs transforms into
C2/c—an alternative basis of Ey,.

The neutron powder diffraction technique is necessarily limited in its scope. Having
demonstrated in this study that sodium carbonate is an ideal prototype material for the
analysis of m = 2 ferroelastic phase transitions, it would now be worthwhile attempting
careful single-crystal diffraction studies of sodium carbonate at a nurber of temperatures
in the vicinity of the phase transition in order to obtain accurate information about the line
profiles and temperature factors.
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